Почему свёрточные нейросети оказались лучше обычных (MLP, например) именно в задачах классификации изображений?
🔹Количество параметров
Представим, что вы решили использовать обычную многослойную сеть с кросс-энтропией для классификации изображений, предварительно развернув каждую картинку в вектор. В таком случае, количество параметров в первом слое будет зависеть от размерности вектора (например, 1920x1080) и числа нейронов. Если количество нейронов слишком мало, мы рискуем потерять важную информацию.
Свёрточные нейросети предлагают решение этой проблемы. Их архитектура позволяет значительно сократить количество параметров за счёт использования свёрток и пулинговых слоёв. Это не только уменьшает сложность модели, но и помогает сохранять важные характеристики изображений.
🔹Структура данных
Обычная многослойная нейронная сеть должна справляться с инвариантностью к различным преобразованиям изображений, таким как повороты и сдвиги. Это достигается увеличением числа нейронов в скрытых слоях, что нежелательно с точки зрения вычислительных ресурсов и риска переобучения.
Свёрточные нейросети, благодаря своей структуре, автоматически учитывают локальные паттерны в изображениях и могут обрабатывать данные иерархически. Это означает, что CNN способны выделять важные признаки на разных уровнях абстракции, что улучшает обобщающую способность модели и её устойчивость к трансформациям.
Почему свёрточные нейросети оказались лучше обычных (MLP, например) именно в задачах классификации изображений?
🔹Количество параметров
Представим, что вы решили использовать обычную многослойную сеть с кросс-энтропией для классификации изображений, предварительно развернув каждую картинку в вектор. В таком случае, количество параметров в первом слое будет зависеть от размерности вектора (например, 1920x1080) и числа нейронов. Если количество нейронов слишком мало, мы рискуем потерять важную информацию.
Свёрточные нейросети предлагают решение этой проблемы. Их архитектура позволяет значительно сократить количество параметров за счёт использования свёрток и пулинговых слоёв. Это не только уменьшает сложность модели, но и помогает сохранять важные характеристики изображений.
🔹Структура данных
Обычная многослойная нейронная сеть должна справляться с инвариантностью к различным преобразованиям изображений, таким как повороты и сдвиги. Это достигается увеличением числа нейронов в скрытых слоях, что нежелательно с точки зрения вычислительных ресурсов и риска переобучения.
Свёрточные нейросети, благодаря своей структуре, автоматически учитывают локальные паттерны в изображениях и могут обрабатывать данные иерархически. Это означает, что CNN способны выделять важные признаки на разных уровнях абстракции, что улучшает обобщающую способность модели и её устойчивость к трансформациям.
#глубокое_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.
The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.
Библиотека собеса по Data Science | вопросы с собеседований from ar